Как синтезируют белок. Искусственный синтез белков Синтетические белки в рационе

Обмен веществ — важнейшее свойство живых организмов. Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом . Метаболизм состоит из реакций ассимиляции (пластического обмена, анаболизма) и реакций диссимиляции (энергетического обмена, катаболизма). Ассимиляция — совокупность реакций биосинтеза, протекающих в клетке, диссимиляция — совокупность реакций распада и окисления высокомолекулярных веществ, идущих с выделением энергии. Эти группы реакций взаимосвязаны: реакции биосинтеза невозможны без энергии, которая выделяется в реакциях энергетического обмена, реакции диссимиляции не идут без ферментов, образующихся в реакциях пластического обмена.

По типу обмена веществ организмы подразделяются на две группы: автотрофы и гетеротрофы. Автотрофы — организмы, способные синтезировать органические вещества из неорганических и использующие для этого синтеза или солнечную энергию, или энергию, выделяющуюся при окислении неорганических веществ. Гетеротрофы — организмы, использующие для своей жизнедеятельности органические вещества, синтезированные другими организмами. В качестве источника углерода автотрофы используют неорганические вещества (СО 2), а гетеротрофы — экзогенные органические. Источники энергии: у автотрофов — энергия солнечного света (фотоавтотрофы ) или энергия, выделяющаяся при окислении неорганических соединений (хемоавтотрофы ), у гетеротрофов — энергия окисления органических веществ (хемогетеротрофы ).

Большинство живых организмов относится или к фотоавтотрофам (растения), или к хемогетеротрофам (грибы, животные). Если организмы, в зависимости от условий, ведут себя как авто- либо как гетеротрофы, то их называют миксотрофами (эвглена зеленая).

Биосинтез белков

Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В каждой клетке постоянно синтезируются тысячи различных белковых молекул. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Согласно этой догме способность клетки синтезировать определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называется геном . Гены не только хранят информацию о последовательности аминокислот в полипептидной цепочке, но и кодируют некоторые виды РНК: рРНК, входящие в состав рибосом, и тРНК, отвечающие за транспорт аминокислот. В процессе биосинтеза белка выделяют два основных этапа: транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.

Генетический код и его свойства

Генетический код — система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считается расшифрованной.

Свойства генетического кода:

  1. триплетность: каждая аминокислота кодируется сочетанием из трех нуклеотидов (триплетом, кодоном);
  2. однозначность (специфичность): триплет соответствует только одной аминокислоте;
  3. вырожденность (избыточность): аминокислоты могут кодироваться несколькими (до шести) кодонами;
  4. универсальность: система кодирования аминокислот одинакова у всех организмов Земли;
  5. неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов;
  6. из 64 кодовых триплетов 61 — кодирующие, кодируют аминокислоты, а 3 — бессмысленные (в РНК — УАА, УГА, УАГ), не кодируют аминокислоты. Они называются кодонами-терминаторами , поскольку блокируют синтез полипептида во время трансляции. Кроме того, есть кодон-инициатор (в РНК — АУГ), с которого трансляция начинается.

Таблица генетического кода

Первое
основание
Второе основание Третье
основание
У(А) Ц(Г) А(Т) Г(Ц)
У(А) Фен
Фен
Лей
Лей
Сер
Сер
Сер
Сер
Тир
Тир

Цис
Цис

Три
У(А)
Ц(Г)
А(Т)
Г(Ц)
Ц(Г) Лей
Лей
Лей
Лей
Про
Про
Про
Про
Гис
Гис
Глн
Глн
Арг
Арг
Арг
Арг
У(А)
Ц(Г)
А(Т)
Г(Ц)
А(Т) Иле
Иле
Иле
Мет
Тре
Тре
Тре
Тре
Асн
Асн
Лиз
Лиз
Сер
Сер
Арг
Арг
У(А)
Ц(Г)
А(Т)
Г(Ц)
Г(Ц) Вал
Вал
Вал
Вал
Ала
Ала
Ала
Ала
Асп
Асп
Глу
Глу
Гли
Гли
Гли
Гли
У(А)
Ц(Г)
А(Т)
Г(Ц)

* Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.

Реакции матричного синтеза

Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.

Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомных РНК. ДНК одной хромосомы может содержать несколько тысяч генов, которые располагаются в линейном порядке. Место гена в определенном участке хромосомы называется локусом . Особенностями строения гена эукариот являются: 1) наличие достаточно большого количества регуляторных блоков, 2) мозаичность (чередование кодирующих участков с некодирующими). Экзоны (Э) — участки гена, несущие информацию о строении полипептида. Интроны (И) — участки гена, не несущие информацию о строении полипептида. Число экзонов и интронов различных генов разное; экзоны чередуются с интронами, общая длина последних может превышать длину экзонов в два и более раз. Перед первым экзоном и после последнего экзона находятся нуклеотидные последовательности, называемые соответственно лидерной (ЛП) и трейлерной последовательностью (ТП). Лидерная и трейлерная последовательности, экзоны и интроны образуют единицу транскрипции. Промотор (П) — участок гена, к которому присоединяется фермент РНК-полимераза, представляет собой особое сочетание нуклеотидов. Перед единицей транскрипции, после нее, иногда в интронах находятся регуляторные элементы (РЭ), к которым относятся энхансеры и сайленсеры . Энхансеры ускоряют транскрипцию, сайленсеры тормозят ее.

Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой.

РНК-полимераза может присоединиться только к промотору, который находится на 3"-конце матричной цепи ДНК, и двигаться только от 3"- к 5"-концу этой матричной цепи ДНК. Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ).

В результате транскрипции образуется «незрелая» иРНК (про-иРНК), которая проходит стадию созревания или процессинга. Процессинг включает в себя: 1) КЭПирование 5"-конца, 2) полиаденилирование 3"-конца (присоединение нескольких десятков адениловых нуклеотидов), 3) сплайсинг (вырезание интронов и сшивание экзонов). В зрелой иРНК выделяют КЭП, транслируемую область (сшитые в одно целое экзоны), нетранслируемые области (НТО) и полиадениловый «хвост».

Транслируемая область начинается кодоном-инициатором, заканчивается кодонами-терминаторами. НТО содержат информацию, определяющую поведение РНК в клетке: срок «жизни», активность, локализацию.

Транскрипция и процессинг происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).

Трансляция

Трансляция — синтез полипептидной цепи на матрице иРНК.

Органоиды, обеспечивающие трансляцию, — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70S-рибосомы), в свободном виде в цитоплазме (80S-рибосомы) и на мембранах эндоплазматической сети (80S-рибосомы). Таким образом, синтез белковых молекул может происходить в цитоплазме, на шероховатой эндоплазматической сети, в митохондриях и пластидах. В цитоплазме синтезируются белки для собственных нужд клетки; белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки. В рибосоме выделяют малую и большую субъединицы. Малая субъединица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.

В малой субъединице рибосомы расположен функциональный центр (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три — в пептидильном и три — в аминоацильном участках.

Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК (лекция №4). Длина тРНК от 75 до 95 нуклеотидных остатков. Они имеют третичную структуру, по форме напоминающую лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. В антикодоновой петле РНК имеется антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3"-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединять именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.

Двадцать видов аминокислот кодируются 61 кодоном, теоретически может быть 61 вид тРНК с соответствующими антикодонами. Но кодируемых аминокислот всего 20 видов, значит, у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне тРНК не всегда важен), поэтому в клетке обнаружено всего около 40 различных тРНК.

Синтез белка начинается с того момента, когда к 5"-концу иРНК присоединяется малая субъединица рибосомы, в Р-участок которой заходит метиониновая тРНК (транспортирующая аминокислоту метионин). Следует отметить, что любая полипептидная цепь на N-конце сначала имеет метионин, который в дальнейшем чаще всего отщепляется. Синтез полипептида идет от N-конца к С-концу, то есть пептидная связь образуется между карбоксильной группой первой и аминогруппой второй аминокислот.

Затем происходит присоединение большой субъединицы рибосомы, и в А-участок поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.

Пептидилтрансферазный центр большой субъединицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ.

Как только образовалась пептидная связь, метиониновая тРНК отсоединяется от метионина, а рибосома передвигается на следующий кодовый триплет иРНК, который оказывается в А-участке рибосомы, а метиониновая тРНК выталкивается в цитоплазму. На один цикл расходуется 2 молекулы ГТФ. В А-участок заходит третья тРНК, и образуется пептидная связь между второй и третьей аминокислотами.

Трансляция идет до тех пор, пока в А-участок не попадает кодон-терминатор (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения. Полипептидная цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субъединиц рибосомы.

Скорость передвижения рибосомы по иРНК — 5-6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут. Первым белком, синтезированным искусственно, был инсулин, состоящий из 51 аминокислотного остатка. Потребовалось провести 5000 операций, в работе в течение трех лет принимали участие 10 человек.

В трансляции можно выделить три стадии: а) инициации (образование иницаторного комплекса), б) элонгации (непосредственно «конвейер», соединение аминокислот друг с другом), в) терминации (образование терминирующего комплекса).

«Механизмы» сборки полинуклеотидных и полипептидных цепочек у прокариот и эукариот не различаются. Но в связи с тем, что гены прокариот не имеют экзонов и интронов (исключение — гены архебактерий), располагаются группами, и на эту группу генов приходится один промотор, появляются следующие особенности транскрипции и трансляции у прокариот.

  1. В результате транскрипции образуется полицистронная иРНК, кодирующая несколько белков, совместно обеспечивающих определенную группу реакций.
  2. иРНК имеет несколько центров инициации трансляции, терминации трансляции и НТО.
  3. Не происходят КЭПирование, полиаденилирование и сплайсинг иРНК.
  4. Трансляция начинается еще до завершения транскрипции; эти процессы не разделены во времени и пространстве, как это имеет место у эукариот.

1 — ДНК; 2 — РНК-полимераза; 3 — Нуклеозидтрифосфаты ГТФ, ЦТФ, АТФ, УТФ.

Можно добавить, что срок «жизни» прокариотических иРНК — несколько минут (у эукариот — часы и даже сутки).

    Перейти к лекции №9 « Строение прокариотической клетки. Вирусы»

    Перейти к лекции №11 « Понятие об обмене веществ. Биосинтез белков»

06.02.2004, Пт, 09:02, Мск

Ученые из Медицинского института Ховарда Хьюза при университете Вашингтона (Univeristy of Washington’s Howard Hughes Medical Institute) сконструировали первый в истории искусственный белок, который никогда не существовал в природе. Top7 стал первым синтетическим протеином, созданным «с нуля» на компьютере и только затем полученным в лаборатории. В реальности форма молекулы в точности соответствует модели в компьютерной программе. Сейчас разворачивается новый этап работ по проекту Folding@Home — программе распределенных вычислений, работающей через интернет.

Folding@Home предназначен для расчета математической модели «правильного» сворачивания белка в трехмерную структуру и сулит новые перспективы для продления активной жизни человека.

Предполагается, что использованная методика будет использована при конструировании других белков, столь необходимых для медицины человека.

Эта разработка группы биологов под руководством Дэвида Бэйкера (David Baker) проливает свет на загадку фолдинга белков.



Источник: Gautam Dantas/University of Washington
Напомним, что ученым до сих пор непонятны принципы, в соответствии с которыми белки сворачиваются в трехмерном пространстве, принимая особую форму (это явление и получило название «фолдинг белков»).

Успешный эксперимент по конструированию синтетического протеина Top7 проливает определенный свет на механизм фолдинга белков.

Теперь, по словам Дэвида Бэйкера, стали понятны хотя бы некоторые характеристики таинственного процесса .

В настоящее время ученые из университета Вашингтона (Univeristy of Washington’s Howard Hughes Medical Institute) продолжают работу.

Исследовательская группа поставила своей целью сконструировать протеины с точно запрограммированными функциями.

Ожидается, что это будет настоящий прорыв — и не только в медицине.

Что такое фолдинг

В клетках за производство протеинов отвечают рибосомы, где белки собираются из отдельных аминокислот в соответствии с последовательностью, считываемой из ДНК.

Результатом работы такого биологического конвейера являются длинные молекулы — «заготовки» для протеинов. И хотя геном сегодня расшифрован, то есть, известна структура некоторого количества белков, в том числе — человека, даже в этом случае невозможно судить о его функциях. Последние проявляются только после того, как длинная цепочка аминокислот свернется и примет необходимую форму.

Примечательно, что из миллионов потенциально возможных пространственных комбинаций протеин принимает одну-единственную заранее известную форму. Этот процесс и называется фолдингом. Таким образом, в организме образуются готовые к работе гемоглобин, инсулин и другие необходимые для жизнедеятельности белки.

Процесс сворачивания может проходить в несколько стадий длительностью от нескольких секунд до нескольких минут. В последней — решающей — фазе протеин из «предварительного состояния» мгновенно принимает окончательную форму. Именно эта фаза продолжительностью несколько десятков микросекунд представляет собой сложнейшую проблему для моделирования.

Ситуация с принятием окончательной формы усугубляется тем, что процесс в значительной степени зависит от условий внешней среды, в том числе температуры. Одна молекула мгновенно, «естественным образом», сворачивается в природных условиях. Но моделирование этого, казалось бы, простого процесса может занимать годы непрерывной работы многих компьютеров.

В наше время ученые развернули активную деятельность в попытках понять, каким образом протеины выполняют фолдинг так быстро и так надежно.

Понимание этого процесса позволит не только с легкостью создавать усовершенствованные версии белков, существующих в природе, но и моделировать абсолютно новые структуры с новыми свойствами — синтетические «самосборные» протеины с запрограммированной функциональностью. Некоторые даже говорят о будущих «нанороботах», появление которых приведет к настоящей технологической революции, в том числе в медицине.

Фолдинг@на дому.EXE

Первый синтетический протеин создан учеными из Медицинского института Ховарда Хьюза при университете Вашингтона. Именно этот институт является главным спонсором известного проекта Folding@Home — программы распределенных вычислений для расчета фолдинга разнообразных синтетических белков.

Так получилось, что одной из задач, моделирование которой требует огромной вычислительной мощности, является фолдинг протеинов. На современном ПК расчет 1 наносекуды фолдинга белка при определенных температурных условиях занимает примерно 1 день. Для расчета всего процесса требуется в десятки тысяч раз больше вычислительной мощности, потому что фолдинг продолжается несколько десятков микросекунд. Кроме того, необходимо моделировать сворачиваемость разных модификаций молекулы при разных температурах. Для выполнения этой задачи любой вычислительной мощности будет недостаточно.

Folding@Home — один из самых крупных научных проектов распределенных вычислений. На сайте можно скачать программу-клиент, которая работает под Windows, Linux или Macintosh в фоновом режиме или в виде красивого скринсейвера (см. слева). Кстати, работа программы в фоновом режиме с низким приоритетом практически не сказывается на общей производительности системы.

Сейчас в проекте Folding@Home участвуют уже более 270 тыс. пользователей со всех регионов мира. Работает более 570 тыс. компьютеров, их количество постоянно растет. Недавно к числу спонсоров присоединилась компания Google. Она внедрила фоновый обсчет фолдинга в свою популярную надстройку Google Toolbar для браузера Internet Explorer.

На первой стадии развития Folding@Home с октября 2000 г. по октябрь 2001 г. были успешно смоделированы несколько простых, быстро сворачивающихся протеинов, в том числе виллин (количество аминокислот — 36, время фолдинга — 10 микросекунд). Ученые на практике, в результате лабораторных экспериментов, подтвердили корректность полученных результатов.

Хотя виллин (см. рисунок справа) стал «визитной карточкой» проекта, в настоящее время рассчитывается фолдинг более сложных и больших молекул. Так, скоро начнется обсчет протеина Alzheimer Amyloid Beta, который вызывает токсический эффект в болезни Альцгеймера.

Неправильный фолдинг и болезнь Альцгеймера

Сейчас специалисты знают о фолдинге гораздо больше, чем Паулиг и Анфинсен, которые получили Нобелевскую премию за открытие этого процесса полвека назад.

Известно, что протеиновая цепочка иногда может сворачиваться в неправильную форму. Кроме того, были открыты специальные протеины, получившие название чапероны, единственное предназначение которых — помогать другим протеинам сворачиваться и следить за тем, чтобы процесс проходил в соответствии с «инструкцией».

Для корректного фолдинга одной молекулы белка иногда требуется последовательное участие пяти различных чаперонов. Без них процесс может выйти из-под контроля. В этом случае цепочка из аминокислот может присоединиться к другой цепочке с образованием мусора.

Простейший пример нарушения фолдинга знаком каждому человеку, который варил яйцо. В процессе нагревания молекулы протеинов внутри яйца теряют свою форму. После этого они уже не могут свернуться правильным образом и образуют твердую, нефункциональную, но вкусную массу (такое нарушение изображено на рисунке справа).

Примерно то же самое происходит с одним из протеинов в организме человека, пораженного болезнью Альцгеймера . Нефункциональная белковая масса, образовавшаяся в результате неправильного фолдинга одного-единственного протеина, откладывается в определенных участках мозга и мешает его работе.

Безусловно, получение синтетических протеинов будет способствовать созданию новых, эффективных лекарств от болезни Альцгеймера и других недугов, многие из которых свойственны именно пожилым людям. Таким образом, можно ожидать, что человечество сделает новый шаг на пути к увеличению продолжительности человеческой жизни. Предполагается, что в самом ближайшем будущем люди смогут сохранять хорошее здоровье до 80-100 лет, и это уже совсем не фантастика.

/ сайт

1 Статья с описанием работы ученых опубликована 21 ноября 2003 г. в журнале Science.

2 Программа Folding@Home — лишь один из многочисленных проектов распределенных вычислений, которые работают через интернет.
Первым подобным проектом был знаменитый SETI@Home — обработка на компьютере записи аналогового сигнала с радиотелескопа, получавшего сигналы из космоса. Любой пользователь ПК, где бы он ни находился, мог скачать на свой домашний компьютер кусочек радиоспектра из далекой галактики, проанализировать его на предмет наличия аномалий и отправить результаты в институт SETI в США. Этот проект приобрел настолько широкую популярность, что в 1999 году программу-клиент с заявленного сайта скачали миллионы людей. Напомним, что в то время вышел фильм «Контакт» с Джуди Фостер, так что поиск инопланетян с помощью радиотелескопов стал очень модным увлечением, особенно в США.
Поиск внеземного разума продолжается до сих пор, но главной заслугой проекта SETI@Home стало то, что он подтвердил работоспособность схемы распределенных вычислений, когда сотни тысяч обычных «персоналок» совершенно бесплатно выполняют работу, непосильную для самых мощных суперкомпьютеров стоимостью миллионы долларов.

3 Болезнь Альцгеймера — это болезнь 21 века, так как ей подвержены пожилые люди.
По статистике, болезнью Альцгеймера заболевают около 10% населения старше 65 лет и около 50% старше 85 лет. В США умирают из-за этого недуга примерно 100 тыс. человек ежегодно.


    2.Кровь содержит белок.При нагревании или обработке белка начинается процесс денатурации.Разрушается белковая основа гемоглобина, и на одежде остаются пятна окиси железа, по сути - ржавчина, которую тяжело отстирать.

    Ответить Удалить
  1. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    10. Первым белком,который был синтезирован искусственно, был - инсулин, а также соевый белок.

    Ответить Удалить
  2. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    9.Трипсин, Пепсин.

    Ответить Удалить
  3. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.
    3.Именно сера — поставщик кератина, из которых строятся волосяные чешуйки. При дефиците серы волосы становятся тусклыми и безжизненными, теряют свою упругость.

    Ответить Удалить
  4. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    6. Для растущего организма необходимы белки, а содержание белков больше в мясном супе.

    Ответить Удалить
  5. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    2) Кровь содержит белок, который сворачивается при температуре выше 42 градусов

    Ответить Удалить
  6. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    6. В мясном супе есть белок, он нужен для того чтобы росла мышечная масса.

    Ответить Удалить
  7. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    7.Молоко может свернуться из-за процесса скисания. В составе любого молока есть специальные молочнокислые бактерии. Если молоко охлаждено, то они находятся в своего рода спящем состоянии. Когда продукт оказывается в температуре, приближенной к комнатной, то бактерии начинают активно размножаться. В результате этого процесса молоко изменяет свои свойства - консистенцию и вкус. Причиной скисания обычно становится неправильное хранение. Причем в этом не всегда виноват потребитель - если на заводе или в магазине молоко долго оставалось при неподходящей температуре, оно может скиснуть очень быстро.

Конденсация аминокислот, приводящая к полипептидной цепи, представляет собой хорошо изученный процесс. Можно провести, например, конденсацию какой - либо одной аминокислоты или смеси кислот и получить, соответственно, полимер, содержащий одинаковые звенья, либо различные звенья, чередующиеся в случайном порядке. Такие полимеры мало похожи на природные полипептиды и не обладают биологической активностью. Основная задача состоит в том, чтобы соединять аминокислоты в строго определенном, заранее намеченном порядке, чтобы воспроизвести последовательность аминокислотных остатков в природных белках. Американский ученый Роберт Меррифилд предложил оригинальный метод, позволивший решить такую задачу. Сущность метода состоит в том, что первую аминокислоту присоединяют к нерастворимому полимерному гелю, который содержит реакционно-способные группы, способные соединяться с -СООН - группами аминокислоты. В качестве такой полимерной подложки был взят сшитый полистирол с введенными в него хлорметильными группами. Чтобы взятая для реакции аминокислота не прореагировала сама с собой и чтобы она не присоединилась H2N-группой к подложке, аминогруппу этой кислоты предварительно блокируют объемистым заместителем [(С4Н9)3]3ОС(О)-группой. После того, как аминокислота присоединилась к полимерной подложке, блокирующую группу удаляют и в реакционную смесь вводят другую аминокислоту, у которой также предварительно заблокирована H2N-группа. В такой системе возможно только взаимодействие H2N-группы первой аминокислоты и группы -СООН второй кислоты, которое проводят в присутствии катализаторов (солей фосфония). Далее всю схему повторяют, вводя третью аминокислоту (рис. 26).

На последней стадии полученные полипептидные цепи отделяют от полистирольной подложки. Сейчас весь процесс автоматизирован, существуют автоматические синтезаторы пептидов, действующие по описанной схеме. Таким методом синтезировано множество пептидов, используемых в медицине и сельском хозяйстве. Удалось также получить улучшенные аналоги природных пептидов с избирательным и усиленным действием. Синтезированы некоторые небольшие белки, например гормон инсулина и некоторые ферменты.

Рис. 26.

Существуют также методы синтеза белков, копирующие природные процессы: синтезируют фрагменты нуклеиновых кислот, настроенных на получение определенных белков, затем эти фрагменты встраивают в живой организм (например, в бактерию), после чего организм начинает вырабатывать нужный белок. Таким способом сейчас получают значительные количества труднодоступных белков и пептидов, а также их аналогов.

Поделиться